Skip to main content

Version 0.5 (2024-10-25)

retrieval Augmentation Generation (RAG) technology promotes the integration of domain applications with large models. However, RAG has problems such as a large gap between vector similarity and knowledge reasoning correlation, and insensitivity to knowledge logic (such as numerical values, time relationships, expert rules, etc.), which hinder the implementation of professional knowledge services. On October 25, officially releasing the professional domain knowledge Service Framework for knowledge enhancement generation (KAG) .

Highlights of the Release Version:

1. KAG: Knowledge Augmented Generation

KAG aims to make full use of the advantages of Knowledge Graph and vector retrieval, and bi-directionally enhance large language models and knowledge graphs through four aspects to solve RAG challenges (1) LLM-friendly semantic knowledge management (2) Mutual indexing between the knowledge map and the original snippet. (3) Logical symbol-guided hybrid inference engine (4) Knowledge alignment based on semantic reasoning KAG is significantly better than NaiveRAG, HippoRAG and other methods in multi-hop question and answer tasks. The F1 score on hotpotQA is relatively improved by 19.6, and the F1 score on 2wiki is relatively improved by 33.5

The KAG framework includes three parts: kg-builder, kg-solver, and kag-model. This release only involves the first two parts, kag-model will be gradually open source release in the future.

kg-builder

implements a knowledge representation that is friendly to large-scale language models (LLM). Based on the hierarchical structure of DIKW (data, information, knowledge and wisdom), IT upgrades SPG knowledge representation ability, and is compatible with information extraction without schema constraints and professional knowledge construction with schema constraints on the same knowledge type (such as entity type and event type), it also supports the mutual index representation between the graph structure and the original text block, which supports the efficient retrieval of the reasoning question and answer stage.

kg-solver

uses a logical symbol-guided hybrid solving and reasoning engine that includes three types of operators: planning, reasoning, and retrieval, to transform natural language problems into a problem-solving process that combines language and symbols. In this process, each step can use different operators, such as exact match retrieval, text retrieval, numerical calculation or semantic reasoning, so as to realize the integration of four different problem solving processes: Retrieval, Knowledge Graph reasoning, language reasoning and numerical calculation.